Fibo and non fibo

The problem is simple.
Find ($\mathbf{a}^{\wedge} \mathbf{b}$) \% MOD
where,
$\mathrm{a}=$ Nth non-fibonacci number
$b=($ Nth fibonacci number $) \% M O D$
$M O D=10^{\wedge} 9+7$
Consider fibonacci series as $1,1,2,3, \ldots$.
Note : It is guaranteed that Nth non-fibonacci number will always be less than MOD value for every value of N used.
Input
First line contains \mathbf{T}, the number of test cases.
Each next T lines contains a number \mathbf{N}.

Output

Print T lines of output where each line corresponds to the required answer.
Announcement: Constraints are updated. Sorry for inconvenience occurred.

Example

Input:
3
3
2
1
Output:
49
6
4

Explanation

For $\mathrm{N}=3$: 3rd non fibo number $=7$, 3rd fibo number=2. ans $=\left(7^{\wedge} 2\right) \% M O D=49$
For $\mathrm{N}=2$: 2 nd non fibo number =6, 2nd fibo number=1. ans=(6^1) $\%$ MOD=6
For $\mathrm{N}=1$: 1st non fibo number $=4$, 1 st fibo number=1. ans $=\left(4^{\wedge} 1\right) \% M O D=4$

Constraints

$1<=$ T<=100000
$1<=\mathrm{N}<=9^{*} 10^{\wedge} 8$
Note: Test cases have been updated and costraints are changed. Those who get TLE or WA are suggested to resubmit. GOOD LUCK there.

