Power Tower City

You are living in a city build entirely of power towers such as $3^{\wedge} 3^{\wedge} 3$ and $10^{\wedge} 10^{\wedge} 10^{\wedge} 10$. To enter a building you must type the last 9 digits of the number represented by the tower, written in decimal form, on a keypad next to the main entrance. You are not sharp enough at mental maths, but you can write a handy program to bring along in your pocket.

A power tower is defined as repeated exponentiation. We write this using Knuth's up-arrow notation as: $\mathrm{e} \uparrow \uparrow \mathrm{a}=$ $e^{\wedge} e^{\wedge} . .{ }^{\wedge} e$ (a terms). Remember that ${ }^{\wedge}$ (exponentiation) is right assosiative. For example: $2 \uparrow \uparrow 4=2^{\wedge} 2^{\wedge} 2^{\wedge} 2$ $=2^{\wedge}\left(2^{\wedge}\left(2^{\wedge} 2\right)\right)=2^{\wedge} 2^{\wedge} 4=2^{\wedge} 16=65536$, and $3 \uparrow \uparrow 1=3$. The value of a tower of heigh 0 is 1 .

Input

The first line contains integer C in [0..1000], the number of test cases.
Then follows C lines, each with integers e, a in [0..2147483647]. (non-negative 32-bit ints).

Output

For each testcase output $\mathrm{e} \uparrow \uparrow \mathrm{a}$, or if the output has more than 9 digits, output "..." and then the last 9 digits.

Example

Input:
3
00
25
99330674575707320

Output:

1
... 719156736
... 884765625

