Prefix Tiling

You are given a string S with $N(1 \leq N \leq 100,000)$ characters from 'A' to 'Z', inclusive. For an integer L between 1 and N, inclusive, we define match (L) as the length of the longest prefix of S that can be tiled by the length-L prefix of S; more specifically, match (L) is the smallest 0-based index k such that $S[k] \neq S[k$ mod $L]$, or N if no such k exists. For example, when $S=$ "ABCAB", match $(1)=1$, match $(3)=5$, and match $(4)=4$. Compute the sum match $(1)+$ match $(2)+\ldots+$ match (N).

Input

The first line contains the integer $\mathrm{T}(1 \leq \mathrm{T} \leq 10)$, the number of tests. For each test, there is a single line containing the string S.

Output

For each test case, print a single line containing one integer: the value of match (1) + match (2) + ... + match (N).

Example

Input:
2
ABCAB
ZZZZZZ

Output:

17
36
For the first test case, match (1) + match (2) + match (3) + match $(4)+$ match $(5)=1+2+5+4+5$ $=17$. For the second, the sum is equal to $6{ }^{*} 6=36$.

Warning: large input/output data.

