PRIMITIVEROOTS

Problem 4: PRIMITIVEROOTS

Introduction to Primitive Roots:

a primitive root modulo \boldsymbol{n} is any number g with the property that any number coprime to n is congruent to a power of g modulo n.

The number 3 is a primitive root modulo 7. because

$$
\begin{aligned}
& 3^{1}=3=3^{0} \times 3 \equiv 1 \times 3=3 \equiv 3(\bmod 7) \\
& 3^{2}=9=3^{1} \times 3 \equiv 3 \times 3=9 \equiv 2(\bmod 7) \\
& 3^{3}=27=3^{2} \times 3 \equiv 2 \times 3=6 \equiv 6(\bmod 7) \\
& 3^{4}=81=3^{3} \times 3 \equiv 6 \times 3=18 \equiv 4(\bmod 7) \\
& 3^{5}=243=3^{4} \times 3 \equiv 4 \times 3=12 \equiv 5(\bmod 7) \\
& 3^{6}=729=3^{5} \times 3 \equiv 5 \times 3=15 \equiv 1(\bmod 7)
\end{aligned}
$$

Problem Statement:

Given a number n as input you've to find the (product all the primitive roots of n) $\% \mathrm{n}$ if n is prime.

Input:

The first line consists of t the number of test cases followed by t lines. Each line consists of a prime number n.

Output:

For each test case print the test case number followed by ' $:$ ' followed by (product of all primitive roots of n) \% n. If it is not a prime then print "NOTPRIME"

Input Specifications

$1<=t<=100$
$10000>=n>=3$

Example

Sample Input

3
6
7
9

Sample Output

$1:$ NOTPRIME
2:1
3:NOTPRIME

Description for test case \#2:

The primitive roots of 7 are 3 and 5 . The product $\% 7=15 \% 7=1$

