Maximum Profit

CS\&T, the well-known cellphone company, is going to set some new service stations among n possible ones, which are numbered $1,2, \ldots, n$. The costs of setting these stations are known as P1,P2,..,Pn. Also the company has made a survey among the cellphone users, and now they know that there are m user groups numbered $1,2, \ldots, m$, which will communicate by service station Ai and Bi , and the company can profit Ci .

Now CS\&T wants to know which service stations are to be set that the company will profit most.

Input

T [The number of tests]
n m [$\mathrm{n}<=5000 \mathrm{~m}<=50000$]
P1 P2 P3 ... Pn [Pi<=100]
A1 B1 C1
A2 B2 C2
$\mathrm{Am} \mathrm{Bm} \mathrm{Cm} \mathrm{[1<=Ai} \mathrm{Bi}<,=\mathrm{n}, \mathrm{Ci}<=100]$
[other tests]
At least 80% of the tests satisfy that $\mathrm{n}<=200, \mathrm{~m}<=1000$.

Output

MaximumProfit
[other tests]

Example

Input:

1
55
12345
123
234
133
142
453
Output:
4
Hints:
The service stations to be set are $1,2,3$.

