Progressive progressions

An arithmetic progression is a sequence of numbers $a_{1}, a_{2}, \ldots a_{n}$ such that $a_{i+1}-a_{i}$ is equal for all $0 \leq i<n$. This difference is called the common difference of the arithmetic progression.

Now consider a sequence of arithmetic progressions $A_{1}=\left(a_{1,1}, a_{1,2}, \ldots a_{1, n_{1}}\right), A_{2}=\left(a_{2,1}, a_{2,2}, \ldots\right.$ $\left.a_{2, n_{2}}\right), \ldots A_{k}=\left(a_{k, 1}, a_{k, 2}, \ldots a_{k, n_{k}}\right)$

A progressive progression is such a sequence with the additional properties that:

- $a_{i, n_{i}}=a_{i+1,1}$ for $1 \leq i<k$
- c_{i}, the common difference of A_{i}, is a positive factor of $a_{i, 1}$ for $1 \leq i \leq k$
- $\mathrm{c}_{\mathrm{i}}<\mathrm{c}_{\mathrm{i}+1}$ for $1 \leq \mathrm{i}<\mathrm{k}$
- $\mathrm{n}_{\mathrm{i}}>1$ for $1 \leq \mathrm{i} \leq \mathrm{k}$
- $k \geq 1$

Find the number of progressive progressions such that $\mathrm{a}_{1,1}=1$ and $\mathrm{a}_{\mathrm{k}, \mathrm{n}_{\mathrm{k}}}=\mathrm{N}$. As this number can be quite large, output it modulo 100000007.

Input

The first line of input contains $T(\leq 100)$, the number of testcases. This is followed by the description of the testcases. The description of each testcase consists of a single integer N ($1<\mathrm{N}$ ≤ 1000000).

Output

For each testcase, output modulo 100000007 the number of progressive progressions such that $a_{1,1}=1$ and $a_{k, n_{k}}=N$

Example

Input:

2
5
10
Output:
1

