Projectile Motion

Consider a two-dimensional plane. There are \mathbf{N} poles standing parallel to y -axis. The ith pole has height $\mathbf{H i}$ and is between $\mathrm{y}=0$ and $\mathrm{y}=\mathrm{Hi}$ and at position $\mathbf{X i}$. The gravity acts along negative y-axis and its value is $\mathbf{1 0}$. \mathbf{Q} projectiles are launched from origin with the jth projectile launched at an angle $\mathbf{A} \mathbf{j}$ and with speed $\mathbf{S j}$. For each projectile, print the index of pole that the projectile hits.

The poles in input are arranged in increasing order of $\mathbf{X i}$. If a projectile doesn't hit any pole, print -1 . Indices of pole starts from 1 . The angle is given in degrees and all other units follow SI.

Constraints

$1<=\mathbf{N}<=10^{\wedge} 5$
$1<=\mathbf{Q}<=10^{\wedge} 5$
$1<=\mathbf{X i}<=10^{\wedge} 9$
$1<=\mathbf{S} \mathbf{j}<=10^{\wedge} 9$
$1<=A j<=89$
$1<=H i<=100$

Input

All values in input are integers.
The first line contains N .
The next N lines containes two space separated integers Xi and Hi . The Xis' are in increasing order and unique.
The next line contains Q.
The next Q line contains two space separated integers $A j$ and $S j$.

Output

Print Q lines each containing the pole index hit by the jth projectile. If a projectile doesn't hit any pole, then print -1 .

Example

Input:

Output:

