Prefix Square Free Words

A string is called a square string if it can be obtained by concatenating two copies of the same string (i.e. \$s=uu\$ for some word \$u\$). For example, "abab", "aa" are square strings, while "aaa", "abba" are not. A string is called prefix-square free if none of its prefixes is a square.

Chiaki would like to know the number of nonempty prefix-square free strings whose length is less than or equal to $\$ n \$$. The size of the alphabet Chiaki uses is $\$ \mathrm{~m} \$$. As this number may be very large, Chiaki is only interested in its remainder modulo $\$ 2^{\wedge}\{32\} \$$.

Input

There are multiple test cases. The first line of input contains an integer \$T\$ (\$1 Ve T Ve 100\$), indicating the number of test cases. For each test case:

The first line contains two integers $\$ \mathrm{n} \$$ and $\$ \mathrm{~m} \$\left(\$ 1 \mathrm{Ve} \mathrm{n}\right.$ Ve 100 , $1 \mathrm{Ve} \mathrm{m} \backslash \mathrm{e} 10^{\wedge} 9 \$$) -- the length of the string and the size of the alphabet.

Output

For each test case, output an integer denoting the answer.

Example

Input:

2
32
46

Output:

8
1266

Information

There are $\$ 5 \$$ input files:

- Input \#1: \$1 \e T Ve 100, 1 Ve n Ve 10\$.
- Input \#2: \$1 Ve T Ve 50, 1 Ve n Ve 30\$.
- Input \#3: \$1 Ve T Ve 30, 1 Ve n Ve $60 \$$.
- Input \#4: \$1 \e T Ve 10, 1 Ve n Ve 80\$.
- Input \#5: \$1 Ve T Ve 2, 1 Ve n Ve 100\$.

