Power and Mod

Exponentiation is a mathematical operation, written as b^{n}, involving two numbers, the base b and the exponent n. When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b^{n} is the product of multiplying n bases:

$$
b^{n}=b \times b \times b \times \ldots \ldots \ldots . . .
$$

In computing, the modulo operation finds the remainder after division of one number by another (sometimes called modulus). Given two positive numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as a mod n) is the remainder of the Euclidean division of a by n. For instance, the expression " 5 mod 2" would evaluate to 1 because 5 divided by 2 leaves a quotient of 2 and a remainder of 1 , while " 9 mod 3 " would evaluate to 0 because the division of 9 by 3 has a quotient of 3 and leaves a remainder of 0 ; there is nothing to subtract from 9 after multiplying 3 times 3.

Now, you are given the value of a, b and m. print the value of

$a^{b} \bmod m$

Input

First line contains the number of test cases $t\left(1<=t<=10^{4}\right)$. Next t line contains three integers a, b and m . where $1<=\mathrm{a}, \mathrm{b}<=10^{9}$ and $1<=\mathrm{m}<=2^{64}$

Output:

For each test case print the answer of the problem.

Sample input

2
234
345

Sample output

0
1

