Query

You will be given an array of n elements. Also you will be given Q queries.
In each query, you will be given two integers, which denotes a range of your given array.
In reply to the query, you have to calculate the number of primes in the range from l'th to r'th index of the given array.

Let me explain with an example.
Let the given array is \boldsymbol{a} and $\boldsymbol{a}=\{2,6,3,5,4,3\}$.
Now, if you have a query to calculate the number of primes in the range from 2 to 5 , then the answer will be 2 and the primes are 3 (in index 3) and 5 (in index 4).

Input:

In the first line, you will be given two integers, n and q .
In the next line, you will be given n integers $a_{1}, a_{2}, a_{3} \ldots a_{n}$, the elements of the array.
In the next q lines, you will be given two integers, I and r.

Constraint:

$1<=\mathrm{n}, \mathrm{q}<=10^{5}$
$1<=I, r<=n$
$1<=a_{i}<=1000$ for all i in range 1 to n.

Output:

For each query, print an integer, the number of primes in the range from I to r in a new line.

Sample Input:

66
2457911
13
24
14

46
25

Sample Output:

2
2
3
3
2
2

Explanation:

For the first query, there are two primes from $1^{\text {st }}$ to $3^{\text {rd }}$ index, they are 2 and 5.

