Recurrence Equation Finder

Many problems have solutions involving linear recurrence equations of the form $f(\mathbf{n})=\mathbf{a} \cdot \mathbf{f}(\mathbf{n - 1})+$ $\mathbf{b} \cdot \mathbf{f}(\mathbf{n}-\mathbf{2})(\mathbf{n} \geq \mathbf{2})$. Usually the coefficients \mathbf{a} and \mathbf{b} are between 0 and 10 , so it would be useful to have a program which checks if some given values can be produced by such a recurrence equation. Since the growth of the values $f(n)$ can be exponential, we will consider the values modulo some integer constant \mathbf{k}.

More specifically you will be given $f(0), f(\mathbf{1}), \mathbf{k}$ and some value pairs $\left(\mathbf{i}, \mathbf{x}_{\mathbf{i}}\right)$, where $\mathbf{x}_{\mathbf{i}}$ is the remainder of the division of $f(\mathbf{i})$ by \mathbf{k}.

You have to determine coefficients \mathbf{a} and \mathbf{b} for the recurrence equation \mathbf{f} such that for each given value pair ($\mathbf{i}, \mathbf{x}_{\mathbf{i}}$) the equation $\mathbf{x}_{\mathbf{i}}=\mathbf{f}(\mathbf{i})$ mod \mathbf{k} holds.

Hints

You can write the recurrence equation as follows:
$\binom{a b}{10} \cdot\binom{f(n-1)}{f(n-2)}=\binom{f(n)}{f(n-1)}$
Let $\mathrm{A}:=\binom{a b}{10}$
Then, $\mathrm{A}^{n} \cdot\binom{f(1)}{f(0)}=\binom{f(n+1)}{f(n)}$. These equations also apply if everything is calculated modulo \mathbf{k}.
To speed up the calculation of A^{n}, the identity $A^{n}=\left(A^{n \text { div } 2}\right)^{2} \cdot A^{n \bmod 2}$ may be used. Also, $(a \cdot b)$ $\bmod c=((a \bmod c) \cdot(b \bmod c)) \bmod c$.

Input
The first line of the input contains a number $\mathbf{T} \leq \mathbf{2 0}$ which indicates the number of test cases to follow.

Each test case consists of 3 lines. The first line of each test case contains the three integers $f(0)$, $f(1)$ and k, where $2 \leq k \leq 10000$ and $0 \leq f(0), f(1)<k$. The second line of each test case contains a number $\mathbf{m} \leq 10$ indicating the number of value pairs in the next line. The third line of each test case contains \mathbf{m} value pairs ($\mathbf{i}, \mathbf{x}_{\mathbf{i}}$), where $\mathbf{2} \leq \mathbf{i} \leq \mathbf{1 0 0 0 0 0 0 0 0 0}$ and $\mathbf{0} \leq \mathbf{x}_{\mathbf{i}}<\mathbf{k}$.

Output

For each test case print one line containing the values \mathbf{a} and \mathbf{b} separated by a space character, where $\mathbf{0} \leq \mathrm{a}, \mathrm{b} \leq \mathbf{1 0}$. You may assume that there is always a unique solution.

Example

Input:

223316597
0110000
4
1110243410000000004688516

Output:

11
20

