Recurrence Power Sum

You are given a series defined by the following recurrence:
$f_{0}=x, f_{1}=y$
$f_{n}=\mathbf{a}^{*} f_{n-1}+b^{*} f_{n-2}$
You are required to find the summation of the following series:
$f_{0}{ }^{k}+f_{1}{ }^{k}+f_{2}{ }^{k}+\ldots+f_{n}{ }^{k}$
The values $\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \mathbf{n}, \mathbf{k}$ will be provided. Since the answer can be large, output it modulo 1000000007.

Input

The first line contains a single integer \mathbf{T} denoting the number of test cases. Each test case consists of six space separated integers on a single line, in the order: $\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \mathbf{n}, \mathbf{k}$.

Output

For each test case, output a single integer (on a separate line) denoting the summation of the series as mentioned above.

Constraints

$1 \leq \mathrm{T} \leq 500$
$0 \leq a, b \leq 100$
$0 \leq x, y \leq 10^{9}$
$0 \leq n \leq 10^{15}$
$0 \leq k \leq 1000$

Example

Input:
5
110130
110131
110142
110143
Output:
4
4
15
37

Explanation

In all the sample test cases, $f_{0}=\mathbf{0}, f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$, which is the regular Fibonacci series. The first few terms of the sequence are $\mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{3}, 5, \ldots$.

- For the first case, the required sum is $0^{0}+1^{0}+1^{0}+2^{0}=4$.
- For the second case, the required sum is $0^{1}+1^{1}+1^{1}+2^{1}=4$.
- For the third case, the required sum is $0^{2}+1^{2}+1^{2}+2^{2}+3^{2}=15$.
- For the fourth case, the required sum is $0^{3}+1^{3}+1^{3}+2^{3}+3^{3}=37$.

Note: Time limit is set leniently to allow slow languages to pass.

