Rectangles in a Matrix

In a matrix with n rows and m columns, (i, j) is the cell in i-th row and j-th column $(0<=\mathrm{i}<\mathrm{n}, 0<=\mathrm{j}<\mathrm{m})$. A rectangle ($\mathrm{rO}, \mathrm{r} 1, \mathrm{c} 0, \mathrm{c} 1$) in a matrix is the set of cells (i, j) where $\mathrm{r} 0<=\mathrm{i}<\mathrm{r} 1$ and $\mathrm{c} 0<=\mathrm{j}<\mathrm{c} 1$. ($0<=\mathrm{r} 0<\mathrm{r} 1<=\mathrm{n}, 0<=\mathrm{c} 0<\mathrm{c} 1<=\mathrm{m}$). Two rectangles are called independent if the intersection of their cell set is empty.
Given n, m, k, find the number of ways to choose k independent rectangles from a nxm matrix. The order of these k rectangles doesn't matter, see sample for further clarification.

Input

One line contains three integers $n, m, k(1<=n, m<=1000,1<=k<=6)$.

Output

For each test case, output the number of ways, modulo $10^{\wedge} 9+7$.

Example

Input:
224
10101
Output:
1
3025
Explanation
First case: You have to find the number of ways of choosing 4 independent rectangles from a 2×2 matrix. The only way to do this is to choose each cell as a separate rectangle.

Constraints

($1<=n, m<=1000,1<=k<=6$).
Total number of test cases is around 150. Not all the test cases are included.

