Stone Removing Game

Consider the following game. The game is played on a 5×5 board. Initially every array cell has a piece in it. Two players remove pieces alternatively from the board. The player can remove any number of consecutive pieces in a row or column. For example, in the configuration depicted below where one indicates a piece, the player can either remove one piece ($\mathbf{A 1}, \mathbf{A 2}$, or $\mathbf{B 1}$), or remove two pieces ($\mathbf{A} 1$ and $\mathbf{A} \mathbf{2}$, or $\mathbf{A 1}$ and $\mathbf{B 1}$) simultaneously. The game ends when one player is forced to take the last piece, and the other player wins the game.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
\mathbf{A}	1	1	0	0	0
\mathbf{B}	1	0	0	0	0
\mathbf{C}	0	0	0	0	
\mathbf{D}	0	0	0	0	
\mathbf{D}	0	0	0	0	0
\mathbf{E}	0	0	0	0	0

Write a program that evaluates board configurations from this game. The program must output "winning" when there exists a winning move that no matter how the opponent responds, it will force the opponent to take the last piece. Otherwise, the program must output "losing".

Input

The first line contains \mathbf{n}, the number of test cases. For each test case, a 5×5 grid of an initial game configuration is shown.

Output

For each case, output "winning" or "losing".

Example

Input:

1
10000
11000
11100
11110
11111

Output:

winning

