FirstProblem

You are given two arrays A and B both containing N integers. You have to rearrange numbers in A and B such that $A[0]^{*} B[0]+A[1]^{*} B[1]+\ldots+A[n-1]^{*} B[n-1]$ is minimised. Output that number.

NOTE : that you have do this routine T times.
SCORING : Your score is 100 * correctly solved files / number of files. File is correctly solved if you have solved all T tests correctly.

CONSTRAINTS:

n <= 100000
a[i] $<=10^{\wedge} 9$
NOTE : result will fit in 64 bit integer. IO is huge, use faster io methods.

Input

First number of input is T number of virtual test cases. Each test starts with number N and $\mathbf{2}^{*} \mathrm{~N}$ integers donating A and B.

Output

Ouput minimised value

Example

INPUT :
2
3
113
113
2
12
12
OUTPUT
7
4

Explanation : in first example we can rearrange number (1, 1, 3) and (1, 3, 1) which leads to sum of $7 .(1,2),(2,1)$ in second exmple

