The Least Number

You are given n symbols $a_{1}, a_{2}, \ldots, a_{n}$. You are told that there is a total ordering of the symbols. That is, there is a permutation $[\mathrm{P} 1, \mathrm{P} 2, \ldots, \mathrm{Pn}]$ of $[1,2, \ldots, \mathrm{n}]$ such that $\mathrm{a}_{\mathrm{P}_{1}}<\mathrm{a}_{\mathrm{P}_{2}}<\ldots<\mathrm{a}_{\mathrm{Pn}}$. You are trying to figure out the order by doing comparisons. The process you follow for determining the order is as follows:

- Compare $\left[\mathrm{a}_{1}, \mathrm{a}_{2}\right]$
- Compare $\left[a_{2}, a_{3}\right],\left[a_{1}, a_{3}\right]$
- Compare $\left[a_{3}, a_{4}\right],\left[a_{2}, a_{4}\right],\left[a_{1}, a_{4}\right]$
-
-
- Compare $\left[a_{n-1}, a_{n}\right],\left[a_{n-2}, a_{n}\right], \ldots,\left[a_{1}, a_{n}\right]$

Note that you compare in the order specified. That is you compare $\left[\mathrm{a}_{2}, \mathrm{a}_{3}\right]$, then and only then do you compare $\left[\mathrm{a}_{1}, \mathrm{a}_{3}\right]$.

Definition of Compare $\left[\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right](\mathrm{i}<\mathrm{j})$

- If Compare $\left[\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right]=1$, it means $\mathrm{a}_{\mathrm{i}}>\mathrm{a}_{\mathrm{j}}$. If Compare $\left[\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right]=-1$, it means $\mathrm{a}_{\mathrm{i}}<\mathrm{a}_{\mathrm{j}}$.
- Compare is consistent. Suppose, that you queried $\left[\mathrm{a}_{2}, \mathrm{a}_{6}\right]$ and it was already established $\left[a_{2}<a_{6}\right.$] (because for example $a_{2}<a_{5}$ and $a_{5}<a_{6}$ - since both of these comparisons happen earlier), then $\left[\mathrm{a}_{2}, \mathrm{a}_{6}\right]$ returns -1 .
- If no relationship is known between a_{i} and a_{j}, Compare $\left[\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right]=1$ with probablity $1 / 2$ and -1 with probability $1 / 2$

Your task is to output the probability that a_{1} is the smallest element of the final ordering so obtained.

Input

First line contains T, the number of test cases
Each of the next T lines contains one number each, $\mathbf{n}(1<=\mathrm{n}<=1000)$.

Output

Output T lines in total, one per test case: Probability that a_{1} is indeed the smallest element at the end of the comparisons. Your output will be judged correct if it differs by no more than 10^{-9} to the reference answer.

Example

Input:

Output:

1
0.500
0.3750000

Explanation:

$\mathrm{n}=1$ is trivial
For $\mathrm{n}=2$, only comparison is $\left[\mathrm{a}_{1}, \mathrm{a}_{2}\right]$. a1 is lower with probability $1 / 2$.
For $\mathrm{n}=3$, a 1 is not the least element if either $\left(\mathrm{a}_{1}>\mathrm{a}_{2}\right)$ or $\left(\mathrm{a}_{1}<\mathrm{a}_{2}\right.$ and $\mathrm{a}_{3}<\mathrm{a}_{2}$ and $\left.\mathrm{a}_{3}<\mathrm{a}_{1}\right)$.
So, probability that a_{1} is not the least element $=1 / 2+1 / 8=5 / 8$. Probability that a_{1} is the least $=3 / 8=0.375$.

