DNA Sequences

Thomas, a computer scientist that works with DNA sequences, needs to compute longest common subsequences of given pairs of strings. Consider an alphabet Σ of letters and a word $w=a_{1} a_{2} \ldots a_{r}$, where $a_{i} \in \Sigma$, for $i=1,2, \ldots, r$. A subsequence of w is a word $x=a_{i_{1}} a_{i_{2}} \ldots a_{i_{s}}$ such that $1 \leq i_{1}<i_{2}<\ldots<i_{s} \leq r$. Subsequence x is a segment of w if $i_{j+1}=i_{j}+1$, for $j=1,2, \ldots, s-1$. For example the word ove is a segment of the word lovely, whereas the word loly is a subsequence of lovely, but not a segment.

A word is a common subsequence of two words w_{1} and w_{2} if it is a subsequence of each of the two words. A longest common subsequence of w_{1} and w_{2} is a common subsequence of w_{1} and w_{2} having the largest possible length. For example, consider the words $w_{1}=l o v x x e l y x x x x x$ and $w_{2}=x x x x x x x$ lovely. The words $w_{3}=l o v e l y$ and $w_{4}=x x x x x x x$, the latter of length 7 , are both common subsequences of w_{1} and w_{2}. In fact, w_{4} is their longest common subsequence. Notice that the empty word, of length zero, is always a common subsequence, although not necessarily the longest.

In the case of Thomas, there is an extra requirement: the subsequence must be formed from common segments having length K or more. For example, if Thomas decides that $K=3$, then he considers lovely to be an acceptable common subsequence of lovxxelyxxxxx and xxxxxxxlovely, whereas xxxxxxx , which has length 7 and is also a common subsequence, is not acceptable. Can you help Thomas?

Input

The input contains several test cases. The first line of a test case contains an integer K representing the minimum length of common segments, where $1 \leq K \leq 100$. The next two lines contain each a string on lowercase letters from the regular alphabet of 26 letters. The length / of each string satisfies the inequality $1 \leq I \leq 10^{3}$. There are no spaces on any line in the input. The end of the input is indicated by a line containing a zero.

Output

For each test case in the input, your program must print a single line, containing the length of the longest subsequence formed by consecutive segments of length at least K from both strings. If no such common subsequence of length greater than zero exists, then 0 must be printed.

Example

Input:

3
lovxxelyxxxxx
xxxxxxxlovely
1
lovxxelyxxxxx
xxxxxxxlovely
3
lovxxxelxyxxxx
xxxlovelyxxxxxxx
lovxxxelyxxx
xxxxxxlovely

Output:
6
7
10
0

