Apoorv Loves Primes

Given two arrays A and B of size n and x.Apoorv is given an empty array P. He has to fill the array according to the following conditions:
for each i in range (0 to $\mathrm{x}-1$) \{
if $\mathrm{b}[\mathrm{i}]$ is negative (insert the subarray from $\mathrm{A}[\mathrm{abs}$ ($\mathrm{B}[\mathrm{i}]]$ to $\mathrm{A}[\mathrm{n}-1]$ in P at the end)
else (insert the subarray from $A[0]$ to $A[B[i]]$ in P at the end)
\}
Since Apoorv loves Prime numbers He wants to know the Kth prime number in P after the above operation is completed.

So given q queries Apoorv has to report the kth prime number in it.If kth prime doesn't exist print -1 .

Note:Both A and B are 0 indexed.abs stands for absolute value.
Constraints:
$1<=\mathrm{n}<=100000$
$1<=x<=100000$
$1<=A[i]<=1000000$
$0<=a b s(B[i])<=n-1$
$1<=$ q<= 10000
$1<=k<=10000000000$

Input

First line will contain n size of A.
Second line will contain n space separated integers denoting $A[i]$.
Third line will contain x denoting size of B.
Fourth line will contain x space separated integers denoting $B[i]$.
Fifth line will contain q denoting number of queries.
Sixth line will contain q space separated integers denoting k.

Output

Print q lines denoting output for each query.

Example

Input:

Output:

Explanation : P is $[2,3,4]$ so for $\mathrm{k}=1$ answer is 2 ,for $\mathrm{k}=2$ answer is 3 ,for $\mathrm{k}=3$ answer=- 1 because 3 rd prime number doesn't exist.

