Slow Growing Bacteria

Given an nxn grid of cells, a bacteria colony can colonize these cells. Their growth after every second is governed by the following rules:

1) One new bacteria is born in cell ($i, j)$ if and only if either one of its four neighboring cells or the cell(i,j) itself has a bacteria population more than or equal to the threshold value, k .
2) Already living bacterias do not die.

Given, the initial state of the nxn cell grid, you need to accurately estimate the time by when the total bacteria population reaches m .

Input

First line contains t , number of test cases.
Each test case starts with n (side length of grid), k (growth threshold) and m (final population).
Next n lines contain an nxn grid of integers, where ith row,jth column has an integer representing the number of bacteria's present initially at cell(i,j).
$1<n<=100,0<k<=2^{\wedge} 45,0<m<=2^{\wedge} 45$,
There are no more than n cells with initial population equal to or greater than k .

Output

For each test case print the number of seconds required for the total bacteria population to reach m . If m can never be reached print "Not possible" (quotes for clarity).

Example

Input:

Output:

