Sum of Squares with Segment Tree

Segment trees are extremely useful. In particular "Lazy Propagation" (i.e. see here, for example) allows one to compute sums over a range in $\mathrm{O}(\mathrm{lg}(\mathrm{n}))$, and update ranges in $\mathrm{O}(\mathrm{lg}(\mathrm{n}))$ as well. In this problem you will compute something much harder:

The sum of squares over a range with range updates of 2 types:

1) increment in a range
2) set all numbers the same in a range.

Input

There will be $\mathbf{T}(\mathbf{T}<=25)$ test cases in the input file. First line of the input contains two positive integers, $\mathbf{N}(\mathbf{N}<=100,000)$ and $\mathbf{Q}(\mathbf{Q}<=100,000)$. The next line contains \mathbf{N} integers, each at most 1000. Each of the next \mathbf{Q} lines starts with a number, which indicates the type of operation:
$2 \mathbf{s t} \mathbf{n d}$-- return the sum of the squares of the numbers with indices in [st, nd] \{i.e., from st to nd inclusive ($1<=\mathbf{s t}<=\mathbf{n d}<=\mathbf{N}$).
$1 \mathbf{s t} \boldsymbol{n d} \mathbf{x}$-- add "x" to all numbers with indices in [st, nd] ($1<=\mathbf{s t}<=\mathbf{n d}<=\mathbf{N}$, and $-1,000<=\mathbf{x}<=$ $1,000)$.

0 st nd \mathbf{x}-- set all numbers with indices in [st, nd] to "x" ($1<=\mathbf{s t}<=\mathbf{n d}<=\mathbf{N}$, and $-1,000<=\mathbf{x}<=$ 1,000).

Output

For each test case output the "Case <caseno>:" in the first line and from the second line output the sum of squares for each operation of type 2 . Intermediate overflow will not occur with proper use of 64 -bit signed integer.

Example

Input:
2
45
1234
214
0341
214
1341
214
11
1
211

Output:

Case 1:

