Self Descriptive Number

A positive integer *m* is called "self-descriptive" in base *b*, where $b \ge 2$ and *b* is an integer, if:

i) The representation of m in base b is of the form $(a_0a_1...a_{b-1})_b$

```
(that is m = a_0 b^{b-1} + a_1 b^{b-2} + ... + a_{b-2} b + a_{b-1}, where 0 \le a_i \le b-1 are integer)
```

ii) a_i is equal to the number of occurrences of number i in the sequence $(a_0a_1...a_{b-1})$.

For example, $(21200)_5$ is "self-descriptive" in base 5, because it has five digits and contains two 0s, one 1s, two 2s, and no (3s or 4s).

 $(21200)_5 = (1425)_{10}$ so 1425 is "self-descriptive" number.

Given **n** $(1 \le n \le 10^{18})$ and **m** $(1 \le m \le 10^9)$, your task is to find the **n**-th smallest "self-descriptive" number.

Input

The first line there is an integer **T** $(1 \le T \le 10^5)$.

For each test case there are two integers **n** and **m** written in one line, separated by a space.

Output

For each test case, output the **n**-th smallest "self-descriptive" number, (output the number in base 10) modulo **m**.

Example

Input: 2

1 1000 2 1000

Output:

100 136

Explanation

100 is "self descriptive" number in base 4: (1210)₄

136 is "self descriptive" number in base 4: (2020)₄

Time limit ~230x My program speed: <u>Click here to see my submission history and time</u> <u>record for this problem</u>

See also: Another problem added by Tjandra Satria Gunawan