Self Descriptive Number

A positive integer m is called "self-descriptive" in base b, where $b \geq 2$ and b is an integer, if:
i) The representation of m in base b is of the form $\left(a_{0} a_{1} \ldots a_{b-1}\right)_{b}$
(that is $m=a_{0} b^{b-1}+a_{1} b^{b-2}+\ldots+a_{b-2} b+a_{b-1}$, where $0 \leq a_{i} \leq b-1$ are integer)
ii) a_{i} is equal to the number of occurrences of number i in the sequence $\left(a_{0} a_{1} \ldots a_{b_{-1}}\right)$.

For example, $(21200)_{5}$ is "self-descriptive" in base 5 , because it has five digits and contains two 0s, one 1s, two 2s, and no (3s or 4s).
$(21200)_{5}=(1425)_{10}$ so 1425 is "self-descriptive" number.
Given $\mathbf{n}\left(1 \leq \mathbf{n} \leq 10^{18}\right)$ and $\mathbf{m}\left(1 \leq \mathbf{m} \leq 10^{9}\right)$, your task is to find the \mathbf{n}-th smallest "self-descriptive" number.

Input

The first line there is an integer $\mathbf{T}\left(1 \leq \mathbf{T} \leq 10^{5}\right)$.
For each test case there are two integers \mathbf{n} and \mathbf{m} written in one line, separated by a space.

Output

For each test case, output the \mathbf{n}-th smallest "self-descriptive" number, (output the number in base 10) modulo m .

Example

Input:
2
11000
21000
Output:
100
136

Explanation

100 is "self descriptive" number in base 4: (1210) ${ }_{4}$
136 is "self descriptive" number in base 4: (2020) ${ }_{4}$
Time limit ~230x My program speed: Click here to see my submission history and time record for this problem

See also: Another problem added by Tjandra Satria Gunawan

