Sequence Function

We define a sequence $\{x\}:\{x\}=\left\{x _0, x_{_} 1, \ldots, x _n-1\right\}$ where $x _i$ is a interger.
We have a function $f:\{x\}->\left\{x^{\prime}\right\}$ where $\{x\}$ is a finite sequence.
After we have a finite sequence $\{x\}$, we can get $f(\{x\})$ follow these rules :
(1). Remove all 0 in $x: a 0 b 0 c d 0$ ef $0 g=>a b c d e f g$
(2). Turn 1 into 100 and -1 into -100 : a 1 b $1-1$ c defg $=>$ a 100 b $100-100$ c defg
(3). Add all $2^{\wedge} k(k>1)$ at the end of the sequence : a 2 b 8 c de $1024 \mathrm{fg}=>\mathrm{a} 2 \mathrm{~b} 8 \mathrm{c}$ de 1024 fg 2 81024
(4). Add any positive odd prime x at the end of the sequence $x-1$ times: $a 3 b c 7 d e f 5 g=>a 3 b$ c 7 def5g337777775555
(5). For any positive composite number (not $2^{\wedge} k, k>1$), we just keep it once: a $6 \mathrm{~b} 6 \mathrm{c} d 6$ e 44 fg => a 6 bc de 44 fg
(6). Keep any $t(t<-1)$ in the sequence.

For a example:
$\{x\}=\{-5102916753299-1\}$
$f(\{x\})=\{-510029167532-1002216777777555533\}$

We define $g(\{x\})$ is the sum of all the element in sequence x.
We define $h(\{x\})=g(f(\{x\}))-g(\{x\})$.

A consecutive sequence of x is a sequence $\left\{x_{-} i, x _i+1, x_{-} i+2, \ldots, x _j\right\}$ where $0<=i<=j<n$.

Now I will give you a sequence $\{x\}$.
I want to ask you the maximal $h(\{y\})$ where $\{y\}$ is a consecutive sequence of $\{x\}$.

Input

One line consists one interger N, the length of $\{x\} . \quad\left(N<=10^{\wedge} 5,\left|x _i\right|<=10000\right)$
Next N lines, each line consists one interger.

Output

The maximal $h(\{y\})$ where $\{y\}$ is a consecutive sequence of $\{x\} .\left(|h(\{y\})|<=2^{\wedge} 63-1\right)$

Example

Input:
5

1

2
6
6
3
Output:
101

