Policija

To help capture criminals on the run, the police are introducing a new computer system. The area covered by the police contains N cities and E bidirectional roads connecting them. The cities are labelled 1 to N . The police often want to catch criminals trying to get from one city to another. Inspectors, looking at a map, try to determine where to set up barricades and roadblocks. The new computer system should answer the following two types of queries:

1. Consider two cities A and B, and a road connecting cities G 1 and G 2 . Can the criminals get from city A to city B if that one road is blocked and the criminals can't use it?
2. Consider three cities A, B and C. Can the criminals get from city A to city B if the entire city C is cut off and the criminals can't enter that city?

Write a program that implements the described system

Input

The first line contains two integers N and $E(2 \leq N \leq 100000,1 \leq E \leq 500000)$, the number of cities and roads. Each of the following E lines contains two distinct integers between 1 and N the labels of two cities connected by a road. There will be at most one road between any pair of cities. The following line contains the integer $Q(1 \leq Q \leq 300000)$, the number of queries the system is being tested on. Each of the following Q lines contains either four or five integers. The first of these integers is the type of the query -1 or 2 .

If the query is of type 1 , then the same line contains four more integers A, B, G1 and G2 as described earlier. A and B will be different. G1 and G 2 will represent an existing road.

If the query is of type 2 , then the same line contains three more integers A, B and $\mathrm{C} . \mathrm{A}, \mathrm{B}$ and C will be distinct integers.

The test data will be such that it is initially possible to get from each city to every other city.

Output

Output the answers to all Q queries, one per line. The answer to a query can be "yes" or "no".

Example

Input:

1315
12
23
35
24
46
26

14
17
78
79
710
811
812
912
1213
5
151312
16214
113678
21367
21368
Output:
yes
yes
yes
no
yes

