Easiest Loop 1

lleana D'Cruz is taking programming classes but she is having problem in understanding while loops. She is working on following set of instructions -

INTEGER $\mathrm{I}=\mathbf{0}, \mathrm{S}, \mathrm{U}=\mathbf{1 0}{ }^{\mathbf{1 0}}$;
WHILE ($1<\mathrm{U}$) \{
$\mathrm{S}=\left(3^{*} \mathrm{~S}\right)+\left(5^{*} \mathrm{I}\right)$;
$I=1+1$;
\}
Let $\mathbf{S}_{\mathbf{k}}$ be the value assigned to INTEGER \mathbf{S} for the iteration $\mathbf{I}=(\mathbf{k}+\mathbf{1})$ and $\mathbf{n}, \mathbf{m}, \mathbf{p}$ be positive integers such that $\mathbf{m}>\mathbf{n}$. lleana knows the values of \mathbf{n} and \mathbf{m} but she forgot the initial value of \mathbf{S}. She is trying to find the unit digit of \mathbf{p}. Any initial value of S may be used. She also knows the following equality -
$(2 * n+3) *(p-1)+(4 / 5) *\left[\left(p S_{n}\right)-S_{m}\right]=2 *(m-n)$
Input
First line of input is \mathbf{T} (total no. of test cases). Each of next \mathbf{T} lines contains two integers \mathbf{n} and \mathbf{m}.

Output

Print unit digit of $\mathbf{p}(\mathbf{p} \% \mathbf{1 0})$ for each test case in separated lines.

Example

Input:

1
23
Output:
3

Constraints

$T<10001$

Explanation

Let $S=2$
$S_{0}=6$
$S_{1}=23$
$\mathrm{S}_{2}=79$
$\mathrm{S}_{3}=252$
Now solving the equation gives $\mathbf{p}=3$.

