Sum of Divisors

SOD means the Sum of Divisors. To be more specific, if we sum up all the divisors of a number then the result is called SOD of the number.

Here you have to implement the same task i.e. you have to calculate the SOD of a number.
Let's say the number is n .
But the input format will be a bit different. I will not give you the number directly. I will give you some information regarding the number where you can calculate the number.

The information will be the number of prime factors of n and how many times this prime factor will occur in n .

For example, if I give you two pairs like $(2,2)$ and $(3,1)$, then the actual number will be

$$
n=2^{2 *} 3^{1}
$$

And the answer for the given two pairs of input will be 28 as the actual number $\mathrm{n}=12$ and the divisors of 12 are $1,2,3,4,6,12$.

Input :
In the first line, you will be given an integer q.
In the next line, you will be given q pairs of integers of the form $\left(p_{i}, c n t_{i}\right)$ where p_{i} is a prime and $\mathrm{cnt}_{\mathrm{i}}$ is the number of times this prime occurs in the actual number, n .

Constraint:

$1<=q<=4$
$1<=p_{i}<=10$
$1<=$ cnt $_{i}<=5$
It is guaranteed that that p_{i} will be a prime number.

Output:

Print the SOD, the result of the given number, n.

Sample Input

Sample Output

42

Explanation:

$n=2^{2 *} 5^{1}=20$. So the divisors of 20 are $1,2,4,5,10$, and 20 and after summing up every divisor of 20 the result is 42 .

