Spam Detection

It is well-known that the number of occurrences of the term "free" can distinguish spam and nonspam emails.
Your task is to build a spam detection module, based on the number of term "free" in an email. The core of this detection module is a spam classifier, which is represented by two variables: Low and High.
An email that contains X "free" words is classified by this module as a spam if Low $\leq \mathrm{X} \leq$ High, otherwise it is not.
To measure the goodness of a classifier, we introduce several information-retrieval terminologies:

Actual
Spam Non-Spam
Predicted Spam TP FP
Non-Spam FN TN
TP (true positive) is the number of emails which are truly predicted as spam; FN (false negative) is the number of emails which are wrongly predicted as non-spam, and so on.
The portion of emails that are correctly identified as spam is denoted as precision (P), which is formulated as $P=T P /(T P+F P)$.
The portion of spam emails that are successfully identified is denoted as recall (R), which is formulated as $\mathrm{R}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})$.
To balance between precision and recall, we use the F-measure which is formulated as $F=2 \times P$ $x R /(P+R)$.
For example, when $T P=5, F P=3, F N=2, T N=4$, we have $R=5 / 7, P=5 / 8$, and $F=2 / 3$. When there is no spam, we can report all emails as non-spam with $\mathrm{F}=1.0$ (perfect classifier). Our data mining team has manually analyzed several emails and labeled them as spam or nonspam.
Your task is to find the values of Low and High that yield the best classifier, i.e., the one that maximizes the F -measure.

Input

The input consists of several test cases, where each case contains of two lines:
N : The maximum number of term "free" in any emails ($1 \leq \mathrm{N} \leq 2 \times 106$)
a0 A B M : parameters of random number generator. ($2 \leq M \leq 10 ; 0 \leq a 0, A, B<M$)
This random number generator generates a sequence of number:
ai $=(A$ * $a i-1+B)$ MOD M for $i>=1$
Specifying:
posi $=\mathrm{a} 2 \mathrm{i}(0 \leq \mathrm{i} \leq \mathrm{N})$: the number of spam emails with i number of term "free".
negi $=$ a2i+1 $(0 \leq \mathrm{i} \leq \mathrm{N})$: the number of non-spam emails with i number of term "free". The input is terminated by EOF.

Output

For each simulation print the F-measure of the best classifier (accurate to 6 decimal places).

Sample Input

3
1113
5
2345

Output for Sample Input

0.666667
0.923077

Explanation for the 1st case: This random number generator generates a sequence of $1,2,0,1$, $2, \ldots$ The number of spam emails is: posi $=\{1,0,2,1\}$, and the number of non-spam emails is negi $=\{2,1,0,2\}$.

The optimal classifier treats emails with number of term "free" between 2 and 3 as spam, with $\mathrm{R}=$ $3 / 4$ and $P=3 / 5$, resulting $F=2 / 3$. Another way of producing optimal classifier is to consider emails with number of term "free" equals to 2 as spam.

