Subset Pattern

You are given a number X . Let us define an array A . You have a sequence $\mathrm{X}^{\wedge} 0, \mathrm{X}^{\wedge} 1, \mathrm{X}^{\wedge} 2, \ldots .$. Take 0 item, 1 item, 2 items, per every time and sum them up. These sums are the elements of array A.
Sort A in increasing order. You are given a number n. You have to print the number in the n-th position. [0-indexed]

For example, let $x=2$. Then the array $A=\left\{0,2^{\wedge} 0,2^{\wedge} 1,2^{\wedge} 0+2^{\wedge} 1,2^{\wedge} 2, \ldots ..\right\}$ or $A=\{0,1,2,3,4, \ldots .$.$\} .$

Input

The input begins with the number t of test cases in a single line ($\mathrm{t}=10^{\wedge} 5$). In each of the next t lines there are two numbers x and $n\left(0<=x, n<=2^{\wedge} 63\right)$ separated by a space.

Output

Just print the desired number in the n-th positon of the array. As the number can very big; output the answer modulo 10000009.

Example

Input:

2
24
510
Output:
4
130

Judge Data is Huge. Use faster I/O method.

