Spin

The classic Chincse Rings puzzle comes in a varicty of forms. The original version has seven rings linkod together by a sliding loop threaded through them. The aim is to remove the loop by manipulating the rings (sec right).
A modern implementation uses seven disks with specially shapod cut-outs mounted on a slide. The slide can move left and right. The slide can always move left until it reaches its left-most position, shown herc:

Each disk can be rotated 90°, so the long end of the black bar points cither straight up (vertical) or to the left (horizontal). The slide can only move right until a vertical disk hits the cad stop under the 'Win' marking:

The Original
Chinese Rings Puzale

A disk can be rotated between horizontal and vertical only if it is positioned over the indentation marked ' 0 ' and the disk on its right is vertical. The right-most disk can always rotate if it is in position ' 0 ' since it has no disk on its right.

The aim is to free the slide by moving it so its left edge aligns with the 'Win' mark:

Your task is to write a program which will take several part-solved puzzles and compute the number of steps needed to move the slide to position `Win' for each puzzle.

Input

There will be several puzzles in the input file. The first line of the file will contain an integer n specifying the number of puzzles. There will then be n lines, each of the form:

length orientations position

where length(length <30) is an integer indicating the number of disks on the slide, orientations is a string of length characters from the set $\{\mathrm{h}, \mathrm{v}\}$ giving the orientation of each disk from left to right (h stands for horizontal, and v for vertical), and position is an integer from 0 to length specifying the numbered mark which aligns with the left edge of the slide.

Output

For each puzzle, your program should output one integer on a line which counts the minimum number of steps needed to win the puzzle. A step is either a movement of the slide, one unit left or right, or the rotation of a disk.

Example

Input:
3
2 vv 2
7 vhhhvhh 4
29 vvvvvvvvvvvvvvvvvvvvvvvvvvvvv 29

Output:

7
357
1073741823

