Stacks of boxes

There are \mathbf{N} stacks of boxes, all boxes have same dimensions as 1 unit. The height of a stack is defined as the number of boxes in it. The initial height of $\boldsymbol{i}^{\text {th }}$ stack is given as $\mathbf{h}_{\mathbf{i}}$ We need to equalize the heights of stacks by adding, removing or moving the boxes accross the stacks.

The cost of each operation is defined as following:

1. Add a box on top of a stack costs \mathbf{A}
2. Remove a box from top of a non-empty stack costs \mathbf{R}
3. Moving a box from top of non-empty stack to top of another stack costs \mathbf{M}

Input

First line contains one integer \mathbf{N}
Second line contains 3 integers the costs $\mathbf{A}, \mathbf{R}, \mathbf{M}$
Thrid line contains the \mathbf{N} integers as heights $\mathbf{h}_{\mathbf{i}}$ for $\mathbf{i}^{\text {th }}$ stack.
$1<=\mathrm{N}<=10^{5}$
$0<=A, R, M<=10^{4}$
$0<=h_{i}<=10^{9}$

Output

One integer in a line - the minimum cost of equalising the heights of all stack by using above operations

Example

Input:
5
122
55365

Output:
3
(Move 1 box from 4th stack to 3rd stack now height are (cost -2) -> 55455 -> now add one box on 3rd stack (cost -1) , total cost=3

