Development Colored

There are \mathbf{N} unique colors in the universe, numbered from $\mathbf{1}$ to \mathbf{N}. George Michael wants to create a rainbow using these colors. The rainbow will consist of exactly M layers. For each layer, George Michael selects a color uniformly randomly from the \mathbf{N} colors and colors the layer with it. George Michael wonders what will be the probability that there will be at least \mathbf{K} distinct colors in the rainbow after all the layers are colored in this way.

Input

The first line of the input contains an integer \mathbf{T}, denoting the number of test cases. Each of the next \mathbf{T} lines will contain three integers, \mathbf{N}, \mathbf{M} and \mathbf{K}.

Constraints

- $1 \leq \mathrm{T} \leq 20$
- $1 \leq N, M, K \leq 2$ * 10^{5}

Output

For each test case, print the case number and the probability that the rainbow will contain at least \mathbf{K} distinct colors after all the layers are colored. Formally, let this probability be an irreducible fraction \mathbf{P} / \mathbf{Q}. Then you need to print $\left(\mathbf{P}^{*} \mathbf{Q}^{-1}\right)$ modulo 1000000007 , where \mathbf{Q}^{-1} is the modular inverse of \mathbf{Q} modulo 1000000007. You may safely assume that there will be a unique modular inverse of Q modulo 1000000007.

Sample Input

3
111
222
422

Sample Output

Case 1: 1
Case 2: 500000004
Case 3: 750000006

Challenge(!)

Colored Development

