String it out

Let \mathbf{A} and \mathbf{B} be two strings made up of alphabets such that $\mathbf{A}=\mathbf{A}_{[1-\mathrm{n}]}, \mathbf{B}=\mathbf{B}_{[1-\mathrm{m}]}$. We say \mathbf{B} is a subsequence of A if there exists a sequence of indices $\dot{i}_{1}<\dot{i}_{2}<. . m$ of A such that $A\left[i_{k}\right]=B[k]$.

Given $\mathbf{B}[1-m]$, a string of characters from some alphabets, $\mathbf{B}^{\boldsymbol{\wedge}} \mathbf{i}$ is defined as string with the characters of \mathbf{B} each repeating \mathbf{i} times. For example, (abbacc) ${ }^{\wedge} \mathbf{3}=\mathbf{a} \mathbf{a} \mathbf{a b b b b b b a a c c c c c c}$. Also, $\mathbf{B}^{\wedge} \mathbf{0}$ is the empty string.

Given strings \mathbf{X}, \mathbf{Y} made up of characters from 'a' - 'z' find the maximum value of \mathbf{M} such that $\mathbf{X}^{\wedge} \mathbf{M}$ is a subsequence of \mathbf{Y}.

Input

- The first line of the input contains a positive integer $\mathbf{t}<=\mathbf{2 0}$, denoting the no. of test cases.
- The following $\mathbf{2 t}$ lines contain the value of \mathbf{X} and \mathbf{Y} for the cases.
- The description of the test cases follow one after the other.
- Line 2k contains the value of \mathbf{X} for case \mathbf{k}; ($1<=\mathbf{k}<=\mathbf{t}$)
- Line $\mathbf{2 k + 1}$ contains the value of \mathbf{Y} for case $\mathbf{k} ;(\mathbf{1}<=\mathbf{k}<=\mathbf{t})$.
- The no. of characters in \mathbf{X}, Y will be $<=\mathbf{5 0 0 0 1 0}$.

Output

The output must contain \mathbf{t} lines, each line corresponding to a test case. The value on the $\mathbf{k}^{\text {th }}$ line should be the value of \mathbf{M} for the $\mathbf{k}^{\text {th }}$ pair of \mathbf{X} and \mathbf{Y}.

Example

Input:
3
abc
aabbcc
abc
bbccc
abcdef
abc

Output:

2
0
0

