Submit | All submissions | Best solutions | Back to list |
Problem hidden on 2013-06-09 23:05:42 by Mitch Schwartz
SUM4PRIM - Sum4Primes |
English version:
The task is easy! Your program will read a number N, between 1 and 100000, and you will have to return the Nth 4-tupel (A,B,C,D) that verifies:
2<=A<=542, 2<=B<=542, 2<=C<=542, 2<=D<=542
A<B<C<D ,
and E=A+B+C+D and A,B,C,D,E all of them are prime numbers.
If the number N is greater than the order of the last possible 4-tupel, you will have to display the last one.
Input
N, a integer number
Output
the Nth 4-tupel that verifies the previous conditions, and the sum of the four numbers.
Example
Input:
3
Output:
2 3 5 19 29
Versión en español:
La tarea es fácil! Tu programa tiene que leer un número N, entre 1 y 100000, y retornar la N-ésima cuaterna (A,B,C,D) que verifica:
2<=A<=542, 2<=B<=542, 2<=C<=542, 2<=D<=542
A < B < C < D ,
y si E=A+B+C+D, entonces A,B,C,D,E son todos números primos.
Si el número N es mayor que el orden de la última cuaterna posible, el programa tiene que mostrar la última cuaterna.
Input
N, un número entero en 1..100000
Output
la N-ésima cuaterna que verifica condiciones, y la suma de los números de la cuaterna, separados por un espacio.
Ejemplo
Input:
3
Output:
2 3 5 19 29
Added by: | Coach UTN FRSF |
Date: | 2013-05-29 |
Time limit: | 0.5s |
Source limit: | 50000B |
Memory limit: | 1536MB |
Cluster: | Cube (Intel G860) |
Languages: | All except: ASM64 |
Resource: | Backtracking example |
hide comments
2013-06-09 21:04:16 Mitch Schwartz
Problem hidden waiting for I/O to be fixed. (Please notify when this is done by leaving a new comment, and the problem can be made visible again.) |
|
2013-06-09 13:14:22 wisfaq
There must be something wrong with the I/O The following Python prog gives NZEC: a=int(raw_input()) print a While a=raw_input() print a returns (understandably) WA Please check both the input and test files Last edit: 2013-06-10 11:44:57 |
|
2013-06-01 15:00:19 Pablo Zanitti
Note that A<B<C<D, so there are no permutations. The order is lexicographic: #1: 2 3 5 7 17 #2: 2 3 5 13 23 #3: 2 3 5 19 29 And so forth. |