Integer Factorization With A Twist

Given a positive integer ($\mathrm{K}>2$), with prime factorization:
$\mathrm{K}=\mathrm{p} 1^{\wedge} \mathrm{a} 1{ }^{*} \mathrm{p} 2^{\wedge} \mathrm{a} 2 \ldots$... $\mathrm{p} n^{\wedge} \mathrm{an}(E X C L U D I N G 1)$

Compute the following:
$S=a 1^{*} p 1+a 2^{*} p 2 \ldots+a n^{*} p n$.
Input
A integer K on each line $\left(2<=k<=10^{\wedge} 15\right)$
Take input until EOF is occured

Output

For each integer compute the $S=a 1^{*} p 1+a 2^{*} \mathrm{p} 2 \ldots+a n^{*} p n$ and output it on a single line.

Example

Input:

6
7
1804289385
846930888
1681692779
1714636917

Output:

5
7
120285967
18767
360709
1008039

WARNING: More than 10000 integers in test file. Use I/O optimization too.
EDIT: All the solutions have been rejudged

