SuperPower

You are given two arrays a and b of size n. You are also given a number p .
You are supposed to find $\left(a[0]^{\wedge} b[0]+a[1]^{\wedge} b[1]+\ldots a[n-1]^{\wedge} b[n-1]\right) \% p$
You must also know that
$(a+b) \% c=(a \% c+b \% c) \% c$
and
($\left.a^{*} b\right) \% c=(a \% c * b \% c) \% c$
Warning: The actual value $\mathrm{a}[\mathrm{i}] \wedge \mathrm{b}[\mathrm{i}]$ may not fit in any primitive data-type, infact it may not even fit in the RAM.

Input

First line contains $\mathrm{T}(\mathrm{T}<=12)$ which is the number of test-cases.
Then contain T-blocks having the following format.
First line of each block contains a number n which is the number of elements of arrays a and b and the number p.
Second line of each block contains n-integers which are the values $a[0], a[1] \ldots a[n-1]$
Third line of each block contains n-integers which are the values $b[0], b[1] \ldots b[n-1]$

Output

For each block of input print the answer.

Example

Input:
2
35
234
111
44
2222
1111

Output:

