Rajan and the talking pairs

As a secretary, Rajan's job is to take attendance of people coming to major events. Today, there are n people lining up at the contest's offline location, numbered from the first to the last as 1 to n. The i-th person has the height of hi.

Two people i and j can see and talk to each other if there is no one with height $>=\min \{h i, h j\}$ standing between them. In other words, if everyone standing in between are shorter than i and j then they can have a conversation.

Rajan wonders how many pairs there are that can see each other. Help him find the answer so he can get back to work!

Input

- First line contains the integer n. $\left(1<=n<=5^{*} 10^{\wedge} 5\right)$
- Second line contains n integers h1, h2, ... , hn (for any i: hi <= 10^6) separated by space

Output

One integer which is the answer

Example 1:

Input:
6
214365

Output:

7

Example 2:

Input:

5

22222

Ouput:

4

Subtask:

-50% of the test cases have $\mathrm{n}<=100$

