Stapled intervals

[The original version of this problem (in Spanish) can be found at http://dc.uba.ar/events/icpc/download/problems/tap2014-problems.pdf]

Two natural numbers \mathbf{n} and \mathbf{m} are said to be coprime if their greatest common divisor is the number $\mathbf{1}$. In other words, \mathbf{n} and \mathbf{m} are coprime if there is no integer $\mathbf{d}>\mathbf{1}$ such that \mathbf{d} exactly divides both \mathbf{n} and \mathbf{m}. A finite set of two or more consecutive natural numbers is called a "stapled interval" if there is no number in it that is coprime to all other numbers in the set.

Given a range [A, B], we would like to count the number of stapled intervals completely contained in it. l.e., we want to know how many different pairs (\mathbf{a}, \mathbf{b}) exist such that $\mathbf{A} \leq \mathbf{a}<\mathbf{b} \leq \mathbf{B}$ and the set $\{\mathbf{a}, \mathbf{a + 1}, \ldots, \mathbf{b}\}$ is a stapled interval.

Input

The first line contains an integer \mathbf{P} representing the number of questions you should answer ($\mathbf{1} \leq \mathbf{P} \leq \mathbf{1 0 0 0}$). Each of the following P lines describes a question, and contains two integer numbers \mathbf{A} and \mathbf{B} representing the borders of the range $[\mathbf{A}, \mathbf{B}]$ in which we want to count stapled intervals ($\mathbf{1} \leq \mathrm{A} \leq \mathrm{B} \leq 10^{\mathbf{7}}$).

Output

Print \mathbf{P} lines, each with a single integer number. For $\mathbf{i}=\mathbf{1}, \mathbf{2}, \ldots, \mathbf{P}$ the number in the \mathbf{i}-th line represents the number of stapled intervals completely contained in the range [A, B] corresponding to the i-th question.

Example

Input:
4
21842200
21852200
21842199
1100000

Output:

1
0

0
13

