Triple-Free Sets

A set \mathbf{S} of positive integers is called strongly triple-free if, for any integer \mathbf{x}, the sets $\{\mathbf{x}, 2 \mathbf{x}\}$ and $\{\mathbf{x}$, $3 \mathbf{x}\}$ are not subsets of \mathbf{S}. Let's define $\mathbf{F}(\mathbf{n})$ as a number of strongly triple-free subsets of $\{1,2, \ldots$, $\mathbf{n}\}$, where \mathbf{n} is a natural number.

You need to write a program which being given a number \mathbf{n} calculates the number $\mathbf{F}(\mathbf{n})$ modulo 1 000000001.

Input

The first line of input contains integer $\mathbf{T}(1 \leq \mathbf{T} \leq 500)$ - the number of testcases. Then descriptions of \mathbf{T} testcases follow.

The description of the testcase consists of one line. The line contains an integer number \mathbf{n} ($1 \leq \mathbf{n}$ ≤ 100000).

Output

For each testcase in the input your program should output one line. This line should contain one integer number which is the number $\mathbf{F}(\mathbf{n})$ modulo 1000000001.

Example

Input:
5
3
1
10
20
39

Output:

5
2
198
43776
971827200

