Triple-Free Sets

A set **S** of positive integers is called *strongly triple-free* if, for any integer **x**, the sets $\{x, 2x\}$ and $\{x, 3x\}$ are not subsets of **S**. Let's define **F**(**n**) as a number of strongly triple-free subsets of $\{1, 2, ..., n\}$, where **n** is a natural number.

You need to write a program which being given a number **n** calculates the number **F(n)** modulo 1 000 000 001.

Input

The first line of input contains integer **T** ($1 \le T \le 500$) - the number of testcases. Then descriptions of **T** testcases follow.

The description of the testcase consists of one line. The line contains an integer number $n (1 \le n \le 100\ 000)$.

Output

For each testcase in the input your program should output one line. This line should contain one integer number which is the number F(n) modulo 1 000 000 001.

Example

Input:	
5	
3	
1	
10	
20	
39	
Output:	
5	
2	
198	
43776	
971827200	