Divisors

We define the function $f(x)=$ the number of divisors of x. Given two integers a and $b(a \leq b)$, please calculate $f(a)+$ $f(a+1)+\ldots+f(b)$.

Input

Two integers a and b for each test case, $1 \leq a \leq b \leq 2^{31}-1$. The input is terminated by a line with $a=b=0$.

Output

The value of $f(a)+f(a+1)+\ldots+f(b)$.

Sample Input

912
12147483647
00

Sample Output

15
46475828386

Hint

For the first test case:
9 has 3 divisors: 1, 3, 9 .

10 has 4 divisors: 1, 2, 5, 10 .
11 has 2 divisors: 1, 11 .
12 has 6 divisors: $1,2,3,4,6,12$.
So the answer is $3+4+2+6=15$.

