Time Limit Exceeded

Given integers N (1 ≤ N ≤ 50) and M (1 ≤ M ≤ 15), compute the number of sequences a_1 , ... a_N such that:

- $0 \le a_i < 2^M$
- a_i is not divisible by $c_i \ (0 < c_i \le 2^M)$
- $a_i \& a_{i+1} = 0$ (that is, a_i and a_{i+1} have no common bits in their binary representation)

Input

The first line contains the number of test cases, T ($1 \le T \le 10$). For each test case, the first line contains the integers N and M, and the second line contains the integers $c_1, ..., c_N$.

Output

For each test case, output a single integer: the number of sequences described above, modulo 1,000,000,000.

Example

Input:

1 22 32

Output:

1

The only possible sequence is 2, 1.