Time Limit Exceeded

Given integers $N(1 \leq N \leq 50)$ and $M(1 \leq M \leq 15)$, compute the number of sequences $a_{1}, \ldots a_{N}$ such that:

- $0 \leq a_{i}<2^{M}$
- a_{i} is not divisible by $c_{i}\left(0<c_{i} \leq 2^{M}\right)$
- $a_{i} \& a_{i+1}=0$ (that is, a_{i} and a_{i+1} have no common bits in their binary representation)

Input

The first line contains the number of test cases, $T(1 \leq T \leq 10)$. For each test case, the first line contains the integers N and M , and the second line contains the integers $\mathrm{c}_{1}, \ldots \mathrm{c}_{\mathrm{N}}$.

Output

For each test case, output a single integer: the number of sequences described above, modulo 1,000,000,000.

Example

Input:
1
22
32
Output:
1

The only possible sequence is 2,1 .

