Swap (Original)

NyanCoder have a new hobby, that hobby is playing with string and He love sorted string. NyanCoder want to make two strings \mathbf{a} and \mathbf{b}, both string have equal length \mathbf{N}. At that both string, NyanCoder want to swap some element (or none) on string a with element on string b that located at same position. More specifically, NyanCoder may choose integer i, and then swap a[i] with $\mathrm{b}[\mathrm{i}]$.

NyanCoder want when he finished playing, both new string have non-decreasing element (e.g. "aabbb", "cccdee" but not "bbaa" or "ebd"). Help NyanCoder to count number of possible initial string \mathbf{a} and \mathbf{b} with length \mathbf{N} that meet the condition that NyanCoder want.

Input

First line there is an integer \mathbf{T} denoting number of test cases, then \mathbf{T} test cases follow.
For each test case, there is two integers \mathbf{N} and \mathbf{M}, separated by a space where \mathbf{N} denoting length of both string, and alphabet that can be used on that both string is \mathbf{M} first letters (lower case) on latin alphabet ('a','b','c', and so on). For example, if $\mathbf{M}=3$, all character on both string is formed with only first 3 lower case letters ('a','b', and 'c').

Output

For each test case, output an integer which is the number of possible initial string \mathbf{a} and \mathbf{b} with length \mathbf{N} and meet all condition that have described before. Since that answer can be too large, take modulo $10^{9}+7$

Example

Input:
1
22
Output:
11

Explanation

When $\mathbf{N}=2$ and $\mathbf{M}=2$, all pair of initial sring that meet the condition is:

1. "aa", "aa"
2. "aa", "ab"
3. "aa", "bb"
4. "ab", "aa"
5. "ab", "ab"
6. "ab", "bb"
7. "bb", "aa"
8. "bb", "ab"
9. "bb", "bb"
10. "ba", "ab"
11. "ab", "ba"

Subtask

- Subtask 1 (10 points): $1<=\mathbf{N}<=5,1<=\mathbf{M}<=26$
- Subtask 2 (20 points): $1<=\mathbf{N}<=10,1<=\mathbf{M}<=26$
- Subtask 3 (30 points): $1<=\mathbf{N}<=40,1<=M<=26$
- Subtask 4 (40 points): $1<=\mathbf{N}<=1000,1<=\mathbf{M}<=26$

To get AC on this problem you need to solve at least one test data (min possible points on rank table for this problem is 10).

Other Info

This is a copy of TOKI problem, with some small changes to become suitable with SPOJ server and judge:

- Language, because SPOJ is International Online Judge, so I must translate the problem statement and other to English before publishing it.
- I/O format, because SPOJ server is busy (too many submission per minute), to make it stable then I should make number of input data as small as possible, so my solution is to put multiple test case in one file.
- Test Case, because I don't know official test case used on this problem, I build my own test case. All possible case that meet the constraints will appear once on each test data.

Problem setter who created this problem is Risan Petrus. I only copy his problem that used on TOKI open contest june 2013 to SPOJ because for me this problem is very interesting. I like it, and I want every user on SPOJ can enjoy his problem too.

See also: Another problem added by Tjandra Satria Gunawan

