Bits. Exponents and Gcd

Rastas's has been given a number n. Being weak at mathematics, she has to consider all the numbers from 1 to 2^n - 1 so as to become perfect in calculations. (You can assume each number is consider as a soldier).

We define the strength of number \dot{i} as the number of set bits (bits equal to 1) in binary representation of number \dot{i} .

If the greatest common divisor of numbers a and b is gcd(a, b),

Rastas would like to calculate the function ${\it S}$ which is equal to:

As the friend of Rastas, it's your duty to calculate S modulo $10^9 + 7$.

Input

The first line of the input contains the number of test cases, T. Each of the next T lines contains an integer n, as mentioned in the question

Output

For each value of \boldsymbol{n} given, find the value of the function $\boldsymbol{S}.$

Constraints

Sum of **n** over all test cases doesn't exceed **2500**.

Example