Bits. Exponents and Gcd

Rastas's has been given a number n. Being weak at mathematics, she has to consider all the numbers from 1 to $2^{n}-1$ so as to become perfect in calculations. (You can assume each number is consider as a soldier).

We define the strength of number i as the number of set bits (bits equal to 1) in binary representation of number i.

If the greatest common divisor of numbers a and b is $\operatorname{gcd}(a, b)$,
Rastas would like to calculate the function S which is equal to:
As the friend of Rastas, it's your duty to calculate S modulo $10^{9}+7$.

Input

The first line of the input contains the number of test cases, \mathbf{T}. Each of the next \mathbf{T} lines contains an integer \mathbf{n}, as mentioned in the question

Output

For each value of \mathbf{n} given, find the value of the function \mathbf{S}.

Constraints

Sum of \mathbf{n} over all test cases doesn't exceed 2500.

Example

Input:
3
1
2
5

Output:

0

3

