The Permutation Game Again

Since YoMamaSoFat was able to answer Blackhood's and Kira's question as in http://www.spoj.com/problems/TPGAME/ (though with a little help from your side), it was my turn to ask him a question. This would again be a coding question as you might be knowing he is a noob in coding. I gave him a permutation of N distinct integers from $1 . . . \mathrm{N}$ and asked him the rank of the permutation when all possible permutations of the integers are arranged lexicographically. eg for $\mathrm{N}=3$, all possible permutations arranged lexicographically would be:-

123

132

213

231

312

321

From the above, rank of 123 would be 1, rank of 132 would be 2 and so on...

HELP HIM!

NOTE:- You may assume it is the same permutation which Blackhood gave him in http://www.spoj.com/problems/TPGAME/ to tell the no. of inversions for each integer in it.

Input

First line of the input contains t, the no. of test cases. ($1<=\mathrm{t}<=10$)

2*t lines follow, two for each test case.

Each test case begins with an integer N, the no of elements in the permutation.($1<=\mathrm{N}<=200000$)

The next line contains N space separated distinct integers from $1 . . \mathrm{N}$, representing the permutation.

Output

For each test case, print the rank of permutation $\% 1000000007$ on a new line.

Example

Input:

