Trailing digits

The story to this problem has trailed off.

Given integers *n*, *m*, and *k*, compute the real number n^{-m} (also known as $1/n^m$) and write it as a decimal number in base 10. You can assume that it won't be a repeating decimal – it can be written with finitely many digits followed by infinite zeros. Print the trailing *k* digits.

Input

The input contains multiple testcases. Their number $1 \le T \le 15$ is in the first line.

Each test case is a single line containing three integers: *n*, *m* and *k*. $(1 \le n \le 10^9, 1 \le m \le 10^5, 1 \le k \le 9)$

It is guaranteed that n^{-m} is not a repeating decimal.

Output

Print the last *k* digits of n^{-m} after which there are only infinite zeros.

If there are less than k digits after the decimal point, do not print the decimal point. You must always print all k digits, even if your output has leading zeros.

Examples

Input:

Output:

25 00125

 $2^{-3} = 0.125$, so the last two digits are 25.

 2^{-3} = 0000.1250000. Ignoring the infinite zeros at the end and the decimal point, the last 5 digits are 00125.