Trailing digits

The story to this problem has trailed off.
Given integers n, m, and k, compute the real number n^{-m} (also known as $1 / n^{m}$) and write it as a decimal number in base 10. You can assume that it won't be a repeating decimal - it can be written with finitely many digits followed by infinite zeros. Print the trailing k digits.

Input

The input contains multiple testcases. Their number $1 \leq T \leq 15$ is in the first line.
Each test case is a single line containing three integers: n, m and $k .\left(1 \leq n \leq 10^{9}, 1 \leq m \leq 10^{5}, 1\right.$ $\leq k \leq 9)$

It is guaranteed that n^{-m} is not a repeating decimal.

Output

Print the last k digits of n^{-m} after which there are only infinite zeros.
If there are less than k digits after the decimal point, do not print the decimal point. You must always print all k digits, even if your output has leading zeros.

Examples

Input:
2
232
235
Output:
25
00125
$2^{-3}=0.125$, so the last two digits are 25 .
$2^{-3}=0000.1250000$. Ignoring the infinite zeros at the end and the decimal point, the last 5 digits are 00125.

