The art of tree numbers

A number is called a tree_num while it can be partition into sum of some distinct powers of 3 with natural exponent. Example : 13 and 90 are tree_num because $13=3^{2}+3^{1}+3^{0}, 90=3^{4}+3^{2}$.

Let tree_num(i) be the i-th largest tree_num.
Example : tree_num $(1)=1$, tree_num $(2)=3$, tree_num $(5)=10, \ldots$
Let

$$
F(L, R)=\sum_{i=L \text { tree_num }(i)}^{R}
$$

Your task is to find $F(L, R)$ with some given L, R.

Input

- First line : an integer T - number of testcases $(1 \leq T \leq 100000)$
- Next T lines : each line contains two number $-L$ and $R\left(1 \leq L \leq R \leq 10^{18}\right)$

Output

- \quad For each pair (L, R), output a line containing the value $F(L, R)$. Since those values can be very large, just output them modulo 2^{32}

Example

Input:
5
13
33
45
67
25

Output:

