Tree _order

Description

A tree is a connected acyclic graph.

A binary tree is a tree for which each node has a left child, a right child, both, or neither, e.g.

```
1
/\
2 3
/\ \
4 5 6
```

There are three common ways to recursively traverse such a tree.

- 1. Pre-order: parent, left subtree, right subtree
- 2. Post-order: left subtree, right subtree, parent
- 3. In-order: left subtree, parent, right subtree

Given pre-order, post-order, and in-order traversals, determine if they can be of the same binary tree.

For example,

1 2 4 5 3 6 4 5 2 6 3 1 4 2 5 1 3 6

are the pre-order, post-order, and in-order traversals of the tree above.

But

1 2 4 5 3 6 4 5 2 6 1 3 4 2 5 1 6 3 cannot be the pre-order, post-order, and in-order traversals of the same binary tree.

Input

The first line is the number of nodes in each traversal, $0 < N \le 8000$. The second line is the N space separated nodes of the pre-order traversal. The third line is the N space separated nodes of the post-order traversal. The fourth line is the N space separated nodes of the in-order traversal.

Each traversal is a sequence of the nodes, numbered 1 to N, without repetition.

Output

Print "yes" if all three traversals can be of the same tree, and "no" otherwise.

Input	Input
6	6
1 2 4 5 3 6	1 2 4 5 3 6
4 5 2 6 3 1	452613
4 2 5 1 3 6	425163

Output

yes

Output

no