Triangle on Binary Tree

You are given a parent array \mathbf{P} of length \mathbf{N} that represents a binary tree with \mathbf{N} nodes, which may be unbalanced, balanced, complete or full. The array indexes are values in tree nodes and the array values represent the parent node of that particular index, a value - 1 means that particular index is the root of the tree. This gives both left child and right child or only left child, for a parent, right child cannot exist without left child. You are required to count the total number of potential isosceles triangles in the binary tree. A potential isoscele triangle is the two sides of equal length must be formed by two paths of equal length from a parent or root. Due to the nature of binary tree, not three sides are connected, you can just ignore the remaining unconnected side.

Consider a parent array $[1,5,5,2,2,-1,3]$, it constructs a binary tree like:

There are 4 potential isosceles triangles in total, they are $(1,5,2),(0,5,4),(3,2,4)$ and $(3,2,5)$ respectively.

Input

The first line is the number of test cases $\mathbf{T} .(1 \leq \mathrm{T} \leq 50)$
For each test case, it starts with one integer representing the number of nodes or length of the array $\mathbf{N} .\left(1 \leq N \leq 10^{5}\right)$
The next line has N integers, $\mathbf{P}_{\boldsymbol{i}}$ is the node's parent node (-1 is the root) and \mathbf{i} is its value. ($-1 \leq P_{i} \leq N-1$)

Output

Print the total number of potential isosceles triangles.

Example

Input:

3
7
15522-13

20
$-10011354748891010915151616$
5
301-12
Output:
4
20
0

Explanation

Let's visualize the sample input:

Case 1 is just the sample mentioned above.

Case 2 has 20 potential isosceles triangels: $(1,0,2),(3,1,4),(5,1,9),(6,1,15),(7,4,9),(8,4,15),(10,4,17),(12,9,15),(10,8,11),(16,15,17)$, $(13,10,14),(18,16,19),(4,1,0),(1,4,7),(4,9,12),(7,8,11),(9,15,16),(8,10,14),(15,16,19)$ and $(4,15,18)$.

Case 3 has no triangles.

