Triangle equality

Consider three distinct points A, B, C on a plane. The sum of straight line distances from A to B and B to C is always greater than or equal to the straight line distance from A to C. Equality holds only when $A B C$ is a degenerate triangle. This is the famous triangle inequality

In this case, distance between points is measured by the Euclidean metric. ie, the distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $\operatorname{sqrt}\left(\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right)$. However, this is not the only metric possible. Another common metric used is the Manhattan metric where the distance between the pair of points is given by $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$

You are given N distinct points on a plane where distances are measured using the Manhattan metric. Find the number of ordered triplets of distinct points (A, B, C) such that the sum of distances from A to B and B to C is equal to the distance from A to C.

Input

The first line of input contains an integer $T(<=10)$, the number of test cases to follow.
Following this are the descriptions of T test cases. Each test case description begins with an integer $N(<=50000)$, the number of points. Following this are N lines, each giving the x and y coordinates of a point $\left(0<=x_{i}, y_{i}<=10^{8}\right)$ separated by a space.

Output

Output T lines, each containing the number of ordered triplets of distinct points in every test case with the given property

Example

Input:

2
3
00
11
22
3
00
12
21
Output:
2
0

