Two Squares

Given an integer, how many distinct ways it can be written as the sum of two square integers? The square integers are $0,1,4,9, \ldots$

Since addition is commutative, reordered sums (e.g. $0^{\wedge} 2+5^{\wedge} 2$ and $5^{\wedge} 2+0^{\wedge} 2$) are not distinct and count as just one way.

For example, 50 can be written as a sum of squares in exactly two distinct ways: $1^{\wedge} 2+7^{\wedge} 2$ and $5^{\wedge} 2+5^{\wedge} 2$.

Input:

An integer N, from 0 to one quadrillion (10^15) inclusive.

Output:

The number of distinct ways N can be written as the sum of squares.

Example Input 1:
 3
 Example Output 1:
 0

Example Input 2:
50
Example Output 2:
2

Example Input 3:

97682

Example Output 3:

5

