Unique Strings

Some people who love strings have decided to call a special group of strings as the "unique strings."

Let's define $\mathbf{a}(\mathbf{S})$ as the number of characters "a" the string \mathbf{S} contains, and $\mathbf{b}(\mathbf{S})$ as the number of characters "b" the string S contains.
S is a unique string if:

1) S only contains the characters "a" and "b"
2) For every substring S^{\prime} of $S,\left|a\left(S^{\prime}\right)-b\left(S^{\prime}\right)\right|<=3$

For example, "abbab" is a unique string. However, "abbbba" is not because it includes the substring "bbbb" for which $|a(" b b b b ")-b(" b b b b b ")|=4>3$.

Let's say we sort the unique strings - first by length and then lexicographically. The $N^{\text {th }}$ unique string is the string that appears in the position N in the sorted list. The first unique string is assigned the number 1 .

The first 12 unique strings in the sorted list are: $\mathbf{a}, \mathbf{b}, \mathbf{a a}, \mathbf{a b}, \mathbf{b a}, \mathbf{b b}, \mathbf{a a}, \mathbf{a a b}, \mathbf{a b a}, \mathbf{a b b}, \mathbf{b a a}$, bab

Input

A single number $\mathrm{N}\left(1<=\mathrm{N}<=10^{14}\right)$. Your task is to find the $\mathrm{N}^{\text {th }}$ unique string in the sorted list.

Output

A single line: the $\mathrm{N}^{\text {th }}$ unique string in the sorted list.

Example

Input:
10

Output:
abb

Input:
19
Output:
abab

