Up Subsequence

If $x=a_{0} a_{1} a_{2} \ldots a_{n-1}$ is a string where a_{i} denotes the character at index i, a subsequence $\mathrm{a}_{\mathrm{j} 0} \mathrm{a}_{\mathrm{j} 1} \mathrm{a}_{\mathrm{j} 2} \ldots \mathrm{a}_{\mathrm{jn}}$ is called an upsubsequence if $\mathrm{a}_{\mathrm{j} 0}<=\mathrm{a}_{\mathrm{j} 1}<=\mathrm{a}_{\mathrm{j} 2}<=\ldots<=\mathrm{a}_{\mathrm{jn}}$ and $\mathrm{j} 0<\mathrm{j} 1<\mathrm{j} 2<\ldots<j n$.

A maximal upsubsequence of a string is defined as the upsubsequence of maximum length.
BuggyD observes that a string \mathbf{x} can have many maximal upsubsequences. Help him find all the maximal upsubsequences in \mathbf{x}.

Input

The first line of the input contains an integer \mathbf{t}, the number of test cases. \mathbf{t} test cases follow.
Each test case consists of a single line containing a string \mathbf{x}, where the length of \mathbf{x} is no more than 100. \mathbf{x} will not contain any spaces, tabs or other whitespace characters.

Output

For each test csae, output all of the maximal upsubsequences of \mathbf{x} in lexicographical order. Print a blank line after each test case.

Example

Input:
1
abcbcbcd

Output:

abbbcd
abbccd abcccd

